
Analysis Syntax

The EPOS analysis tools are quite sophisticated, including the possibility to use macros and loops. Here, we just
discuss some very basic applications.

An elementary analysis consists of several command between the keywords beginanalysis and endanalysis, a simple
example being

!------------------

! Define analysis

!------------------

beginanalysis

histogram

xvariable

yvariable

normalisation

xmin

xmax

nb_of_bins

trigger variable min max

idcode id_0 idcode id_1 ... idcode id_n-1 idcode id_n

noweak

endanalysis

!---

! Write out final results to output file

!---

write title

histoweight

writearray number_of_columns

The histogram command

For the histogram we imagine something like “y versus x”, where x and y are some variables (xvariable, yvariable).
There are many possible choices for xvariable (rap = rapidity, pt = transverse momentum, mulevt = event multiplic-
ity, etc), whereas for yvariable one usually takes a “counter” (like numptl = number of particles or numevt = number
of events). There are “particle variables” (rap, pt) and “event variables” (mulevt), and the two variables xvariable
and yvariable must be of the same type.

Then one defines the normalization. The analysis procedure performs a sum ∆y = ∑ y of y-values within a bin ∆x.
Without normalisation (i.e. normalization = 0) the output (via writearray 2) will be two columns, the first one (X) being
the x-values (bin centers), and the second one (Y) being ∆y, so we have “∆y versus x”. Usually we want normalized
distributions “Y=K × ∆y versus X” with some normalization K.

The simplest case is normalization being equal to a single digit integer k, which gives the following normalization
factor K1:

k K1

0 1

1 1 / number of events

2 1 / number of triggered events

4 1 / bin-counts

5 1 / bin sum

6 1 / number of summed bin-counts (yield=1.)

7 uses same normalization as previous histogram

In addition, one often needs to divide by the bin width, which can be done by using a normalization being equal to
a two digit integer jk, where in addition to normalization factor K1, we have another factor

j K2

0 1
1 1 / bin-width

2 sigma_total / bin-width

A normalization factor K = K1 × K2 is already enough for most applications. For some special applications, we
allow normalization to be equal to a three digit integer ijk, where in addition to normalization factors K1 and K2, we
have another factor

i K3

0 1
1 x (x-bin center)

2 1 / (2 pi x) (modified for mt0)

3 kno-scaling normalization

4 1 / x**1.5

5 1 / x

(where K3 is strictly speaking not a constant, it may depend on the bin index) and finally one may also use normal-
ization to be equal to a four digit integer hijk, with two options for h, namely h=0 being the normal case discussed

above, giving K∆yi (with i referring to the bins) and h=1, which amounts to ∑
i
j=1 K∆yj.

In order to count y-values in x-bins, as discussed above, we need to define the x-interval, which is done via xmin and
xmax , and the numer of bins, defined via nr_of_bins.

Other analysis command

The trigger command is used to select data with variable values between a lower bound (min) and an upper bound
(max).

The idcode commands define the particles of interest. Please refer to src/KWt/idt.dt to get EPOS identifier values.
(9970 means charged particles)

The command noweak means that we do not take into account weak decays.

There are many more analysis commands!

Output

Only defining an analysis via beginanalysis ... endanalysis will not produce any output, one needs to activate the
output.

The following commands allow to write out the results in a “histogram file” named ${HTO}z-name.histo, where
name corresponds to name chosen for the optns file name.optns. The command write writes litterally to the output
file : it can be used to write simply the histogram title, or much more (the EPOS developers use it to provide a partic-
ular histogram syntax, to be interpreted by graphics tools like python or gnuplot, but this will not be discussed here).

The command histoweight prints the “weight” of the histogram, which is needed for adding several histgrams. Its
precise definition depends on the normalization.

Finally, the command writearray followed by a number n creates a n-column table. The two first columns always
contain X and Y values for all the bins, the content of the third column depends on the normalization.

The normalization affects the output:

• For the “normal cases” like normalization = 11 (or 12), the command histoweight writes out the number of

(triggered) events, and the third column from writearray contains the absolute statistical uncertainty Y/
√

N
(with N being the number of entries in the considered bin).

• For the “special case” of normalization = 4, the command histoweight writes out 0 and the third column of the
results array contains the number of entries in the current bin.

