Alphabetic list of commands

Contains only the most important commands!

Configuration commands

All EPOS configuration commands have the syntax

command parameters

or in some cases

command(parameters)

In the following we provide an **alphabetic list**.

application value

allows to define a type of reaction to be simulated. *value* is any of the following: **kinky** (for electron positron annihilation), **ee** (for decay of kinky string) or **hadron** (for hadronic interaction).

core value

allows to activate the core-corona procedure. *value* is one of the following: **full**, **off** or **PFE** which means Parameterized Fluid Expansion and is used to mimic hydro.

echo value

allows to display the following lines from the optns file to the standard output. The *value* is either **on** or **off**.

eos value

allows to activate equation of state. The value is any of the following: x3ff, best or off.

fillTree4(value)

allows to store the events in the ROOT format, the corresponding file being <code>z-option_file_name.root</code> in the directory \$CHK. The argument <code>value</code> defines the centrality and can take value C1 (the impact parameter is used as centrality) or C2 (the number of pomerons for proton-proton collisions is used as centrality). But one also needs in addition to run epos with the <code>-root</code> option as: \$EPO/script/epos <code>-root</code> <code>option_file_name.optns</code>

ftime value

string formation time non-zero. value is on or off.

hacas value

allows the hadronic re-scatterings simulated with UrQMD. value is full or off.

hydro value

activates the hydrodynamic evolution of the core. value is hlle or off.

nodecays list_of_values end

defines which resonances are prevented from decaying (per default, all decay). $list_of_values$ is a list of EPOS particle id, separated by a space (see src/KWt/idt.dt for the EPOS particle identifiers definition).

print * value

writes the particle list in the file z-name.check in the directory \$CHK. The integer value defines a verbose level.

allows to initialize certain variables, where *value* is a number, and *variable* is any of the following:

- **centrality** centrality class definition. The *value* can take value 0 (min bias) or 1 (central collision) to 20 (peripheral collisions)
- ecms center of mass energy collision (GeV)
- engy
- **ihepmc** if ihepmc=1 the events will be stored in a HepMC output file. To avoid the HepMC file to be removed at the end of the simulation, please run the script EPOS with the option **-hepmc**:

\$EPO/script/epos -hepmc name.optns

The HepMC file will be created in the directory **\$CHK**.

- **iranphi** if iranphi=1 event will be rotated, such that the impact parameter angle and the event plane angle (based on string segments) coincide. The particles are rotated back at the end.
- irescl irescl = 0 for ee to avoid calling a procedure not needed
- istmax max status considered for storage
- laproj projectile atomic number Z
- latarg target atomic number Z
- maproj projectile mass number A
- matarg target mass number A
- modsho output message after modsho simulated events
- **ndecay** block the decay of the particle. This option is now deprecated; please use instead the command **nodecays**
- nevent number of events
- nfreeze number of freeze out events per full hydro event
- nfull number of simulation achieved
- ninicon number of initial conditions used for hydro evolution

Analysis commands

beginanalysis

starts an analysis definition.

binning value

value can be set to *log* for logarithm scale or *lin* for linear scale.

endanalysis

closes an analysis definition.

histogram xvariable yvariable normalisation xmin xmax nb_of_bins

we first define the *xvariable* and *yvariable* as variable values. The possible variable values could be, for example, *pt* (transverse momentum), *numptl* (number or particules), *rap* (rapidity), *mulevt* (multiplicity) or *numevt* (number of events). Then we define a normalisation code, the *xmin* and *xmax* values defining the range for x-values and the number of bins.

histoweight

prints the histoweight value.

frame value

value can be set to total or thrust which is a particular frame used in e+e-.

idcode value

define the particules of interest. Please refer to *src/KWt/idt.dt* to get EPOS identifier values. (9970 means charged particules.)

noweak

means that we ignore all the particles coming from weak decays.

set variable value

allows to initialize certain variables, where *value* is a number, and *variable* is any of the following:

• hisfac : normalisation factor.

trigger variable min max

is used to select data with *variable* values between a lower bound (*min*) and an upper bound (*max*).

write value

value is a character string between quotes or double quotes to be written it in the file \${HTO}z-name.histo.

writearray value

value is the number of columns to be displayed.